Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity

نویسندگان

  • Rutger Fick
  • Alexandra Petiet
  • Mathieu Santin
  • Anne-Charlotte Philippe
  • Stephane Lehericy
  • Rachid Deriche
  • Demian Wassermann
  • Rutger H.J. Fick
چکیده

Effective representation of the diffusion signal’s dependence on diffusion time is a sought-after, yet still unsolved, challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this four-dimensional space – varying over gradient strength, direction and diffusion time. In particular, we provide regularization tools imposing signal sparsity and signal smoothness to drastically reduce the number of measurements we need to probe the properties of this multi-spherical space. We illustrate a novel application of our approach, which is the estimation of time-dependent q-space indices, on both synthetic data generated using Monte-Carlo simulations and in vivo data acquired from a C57Bl6 wild-type mouse. In both cases, we find that our regularization approach stabilizes the signal fit and index estimation as we remove samples, which may bring multi-spherical diffusion MRI within the reach of clinical application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Tensorial Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning

High Angular Resolution Diffusion Imaging (HARDI) can characterize complex white matter micro-structure, avoiding the Gaussian diffusion assumption inherent in Diffusion Tensor Imaging (DTI). However, HARDI methods normally require significantly more signal measurements and a longer scan time than DTI, which limits its clinical utility. By considering sparsity of the diffusion signal, Compresse...

متن کامل

Multi-shell Sampling Scheme with Accurate and Efficient Transforms for Diffusion MRI

We propose a multi-shell sampling grid and develop corresponding transforms for the accurate reconstruction of the diffusion signal in diffusion MRI by expansion in the spherical polar Fourier (SPF) basis. The transform is exact in the radial direction and accurate, on the order of machine precision, in the angular direction. The sampling scheme uses an optimal number of samples equal to the de...

متن کامل

Mapping Orientation Distribution Function with Spherical Encoding

C. Lin, W. I. Tseng, L. Kuo, V. J. Wedeen, J. Chen Interdisciplinary MRI/MRS Lab at Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan, MGH Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States Synopsis DSI reflects the dis...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017